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Abstract. Spatial-temporal traffic flow prediction is beneficial for con-
trolling traffic and saving traffic time. Researchers have proposed pre-
diction models based on spatial-temporal representation learning. Al-
though these models have achieved better performance than traditional
methods, they seldom consider several essential aspects: 1) distances
and directions from the spatial aspect, 2) the bi-relation among histor-
ical time intervals from the temporal aspect, and 3) missing historical
traffic data, which leads to an imprecise spatial-temporal features ex-
traction. To this end, we propose Fine-Grained Features learning based
on Transformer-encoder and Graph convolutional networks (FGFTG) to
improve the performance of traffic flow prediction in a missing data sce-
nario. FGFTG consists of two components: feature extractors and a data
completer. The feature extractors learn fine-grained spatial-temporal
representations from spatial and temporal perspectives. They extract
smoother representation with the information of distance and direction
from a spatial perspective based on graph convolutional networks and
node2vec and achieve bidirectional learning for temporal perspective uti-
lizing transformer encoder. The data completer simulates the traffic flow
data distribution and generates reliable data to fill in missing data based
on generative adversarial networks. Experiments on two public datasets
demonstrate the effectiveness of our approach over the state-of-the-art
methods.

Keywords: Traffic Flow Prediction - Generative Adversarial Network -
Graph Convolutional Neural Network - Transformer Encoder.

1 Introduction

The appearance of cars from the 19th century has brought tremendous changes
to people’s life. It dramatically helps government agencies to avoid potential
catastrophic traffic accidents [48] and brings convenience to daily travel [3].
With the development of technology, the auto industry has been widely used
in intellectualization since the 1980s. In recent years, traffic flow prediction is
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consequently becoming a hot issue for researchers because it can predict the
state of road traffic and is beneficial in a wide range of applications [12, 28, 31].
Traffic jams can be significantly reduced due to route planning based on the
prediction. The prediction can also provide insights to the regulatory authorities
for decision-making, risk assessment, and traffic management.

The traffic flow is easily influenced by multiple factors such as weather, holi-
days, and traffic accidents, which tremendously aggravates prediction accuracy.
Meanwhile, traffic data provided by road sensors are sometimes missing due to
sensor damage or network congestion. For example, the missing data in PeMS
dataset [44] accounted for 11.3%. Consequently, analyzing and coping with the
fast-changing and missing data effectively becomes an urgent problem to solve.
Existing studies [47, 23, 43, 13, 39] usually consider spatial and temporal informa-
tion at the same time. Generally, they usually use Graph Convolutional Network
to extract spatial features, which only focus on spatial node’s flow change (con-
tent information) and neighbor information, ignoring the influence of distance
and direction information between nodes. Fig. 1 shows the real change of traffic

Detector 1 Detector 2
~—0 ~—0 e

Oo—
Detector 3

=
=

2

)

\//\/ \/\\/\Vl‘l //\ /ﬁ—Detector 1

Detector 2
—Detector3

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
time

W W A
I

Traffic flow data

10

Fig. 1: The line chart of traffic flow (reflect the direction and distance of spatial
node).

flow data on the freeway. Detector 1 and detector 2 detect traffic flow data in
the same direction at different locations, while detector 1 and detector 3 are
in the same location in different directions. The result shows that the distance
between detector 1 and detector 3 is closer while the flow distribution is further,
indicating that direction is more critical in this region. Likewise, extracting tem-
poral features also has several shortcomings like error accumulation and one-way
learning occlusion, resulting in partial temporal information loss. In alleviat-
ing the problem of missing data, early studies [21,5,14] fill in data according
to fixed distribution assumptions, such as Gaussian distribution. Nevertheless,
these fixed data distributions usually fail to fit the real flow changes due to the
insufficient consideration of the actual traffic flow context. In summary, these
kinds of methods are too brutal to ensure the robustness of filling data.
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Facing these problems, we propose a fine-grained spatial-temporal represen-
tation learning with missing data completion for accurate traffic flow prediction,
which is challenging due to: (1) integrating spatial features like distance and
direction information and (2) considering bi-relation among historical time in-
tervals from the temporal aspect and (3) generating reliable traffic flow data
for missing values under the high complexity and variability distribution. To
tackle the aforementioned challenges, we propose FGFTG (Fine-Grained spatial-
temporal Features learning based on Transformer encoder and Graph convolu-
tional networks), which contains two parts. The first is temporal-spatial feature
extractors. In particular, spatial feature extractor based on graph convolution
neural network (GCN [7] ) and node2vec [15] technique is designed for integrat-
ing content, neighbour, distances, and directions information. Temporal feature
extractor based on transformer encoder [35] is created to consider bi-relations
among time intervals. The second part is data completer. We design DCGAN
(Data Completion based on Generative Adversarial Networks) to fit the complex
distribution of traffic flow data and generate reliable data for missing values. In
summary, we present the main contributions as follows:

— We innovatively propose FGFTG, a spatial-temporal traffic flow data pre-
diction framework, to learn fine-grained representations by two feature ex-
tractors.

— We design a data completer model DCGAN to simulate the real traffic flow
data distribution and generate reliable data to fill in missing data.

— We conduct experiments on two public datasets. The experiments show that
our model FGFTG significantly outperforms the state-of-the-art traffic flow
prediction models and demonstrate our model’s effectiveness in filling in
missing data.

2 Related Work

Early in the 1960s, traffic low prediction was regarded as transportation and
operational research, which mainly depends on queuing theory and simulation
experiments [9]. Later in the 21st century, data-driven based on the statistics is
presented. The most popular methods are Auto-Regressive Integrated Moving
Average (ARIMA) [36], Kalman filtering [26], Exponential Smoothing model
[45], etc [8,32,38,30]. Nevertheless, this type of model is easily influenced by
dynamic features such as weather, traffic accidents, and holidays, causing inac-
curate results. In 2014, researchers applied deep learning technologies, such as
convolution neural network (CNN), recurrent neural network (RNN), and long
short term memory (LSTM) to this field [18, 37,50, 12,42, 17], which effectively
solves the problems of massive data and complex factors [27,29,46]. But re-
searchers only focus on a single road or area [1,10, 16,24, 33,40, 41] to reduce
the computation process, while ignoring the spatial dependency between roads
or areas. In 2017, Zheng et al. [47] proposed the ST-ResNet model, which is
the first time proposing the concept of spatial-temporal traffic flow prediction.
In their work, not only the temporal features were calculated, spatial features
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are also considered. Subsequently, many researchers started this study based on
spatial and temporal dependency.

In 2018, Li et al. [23] proposed Graph Convolutional Networks based on Re-
current Neural Network (GCRNN) to deal with the complex spatial dependency
on road networks and non-linear temporal dynamics with changing road condi-
tions. Yu et al. [44] proposed Spatio-Temporal Graph Convolutional Networks
(STGCN) comprising several spatio-temporal convolutional blocks to model spa-
tial and temporal dependencies. Yao et al. [43] proposed a DeepMulti-View
Spatial-Temporal Network (DMVST-Net) framework to model both spatial and
temporal relations. Later in 2019, DeepSTN [25] chose the ConvPlus structure to
model the long-range spatial dependence among crowd flows in different regions
and combine Pol (Point of Interest) distributions and time factors to express the
effect of location attributes. Cao et al. [4] analyzed seasonal dependencies based
on data analysis and extracted different features based on these dependencies
for training the prediction model. Geng et al. [13] proposed a spatial-temporal
multi-graph convolution network (ST-MGCN) from three aspects of neighbor-
hood graph, functional similarity graph, and transportation connectivity graph
to extract temporal features for traffic prediction. In 2020, Sun et al. [34] divided
the urban area into different irregular regions by road network and viewed each
region as a node that is associated with time-varying inflow and outflow. Auto-
ST [22] designs a novel search space tailored for the spatio-temporal domain,
which consists of optional convolution operations and learnable skip connections.
However, this work neglects the problem of information loss in the temporal di-
mension and cannot efficiently integrate the content, neighbors, distance, and
direction information of nodes in the spatial dimension.

3 Methodology

Fig.2 illustrates the framework of FGFTG. It consists of two feature extractors
and a data completer, where the latter provides data support for the former.
Specifically, the traffic spatial-temporal flow graph containing missing data go
through the DCGAN model to fill in the incomplete parts. In this way, we
gain the traffic flow graph without missing values at T-2, T-1, T+1, and T+2.
Then, feature extractors regard these graphs as input, utilizing a spatial feature
extractor and a temporal feature extractor to gain fine-grained representations.
At last, we can predict the traffic flow graph at time T.

3.1 Feature Extractors

Current approaches for traffic flow prediction are inadequate for extracting spa-
tial features and temporal features. Traditional methods [47,23,43,13] using
GCN to extract spatial features fail to account for the distance and direction
information between nodes. Likewise, temporal extraction methods based on
RNN and GCN also have some problems, such as accumulation of errors, one-
way learning occlusion, and limited GCN field of view, which fail to consider
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Fig.2: The framework of FGFTG.

bi-relations among historical time intervals. To fill the gaps in existing research,
we propose a feature learning method as shown in Fig. 3. From left to right, each
red box represents the traffic spatial-temporal flow graph at different time nodes
coming from DCGAN. The yellow part is spatial feature extracting layers, which
output vectors with spatial information. The blue part is the temporal feature
extracting layer composed of n-layer temporal feature extractors and output
vectors with temporal information. Finally, feature vectors are mapped to the
predicted flow distribution graph through a fully connected layer. Our model
can effectively predict traffic low data based on the spatial feature extractor
and the temporal feature extractor.

Spatial Feature Extractor :

In this part, we further utilize GCN [7] and node2vec [15] to obtain spatial
features, including the content of spatial nodes, neighbour dependency, distance,
and direction. GCN obtains content and neighbor features by combining local
graph structure and node features. The inputs are composed of a traffic flow
data matrix and neighbor information matrix. According to [18], we consider a
multi-layer GCN with the following layer-wise propagation rule:

HH) =4 (f)—%AD—%HlWl) (1)

where D is the diagonal matrix of traffic flow data, A is the adjacency matrix of
neighbour information, W' denotes the trainable weight matrix of layer I, H' is
the matrix of activations in the I*" layer, and ¢ denotes an activation function.
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Fig. 3: The framework of feature extractors for traffic flow prediction.

Then, we utilize the node2vec method to obtain distance and direction in-
formation by depth-first search and breadth-first search. Finally, we concatenate
the two feature vectors, which simultaneously combine the content information,
neighbors, distance, and direction. We regard them as the spatial feature, which
is the input of the temporal extraction layer.

Temporal Feature Extractor : In this part, we select transformer encoder [35]
as temporal feature extractor. Compared with CNN, we expand its view field
during the whole training phase. Compared with RNN, our model can avoid
dependence on time sequence and considers bidirectional learning. The whole
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Fig. 4: One layer of temporal feature extractor.



Title Suppressed Due to Excessive Length 7

temporal extraction part is composed of multi-layer temporal feature extrac-
tors. Fig. 4 demonstrates one layer of the extractor. The first part is Multi-head
Attention Networks, which consists of multiple self-attention mechanism net-
works; intuitively, it helps the network focus on the more critical parts of the
prediction task. The second part is Residual Block and Layer Normalization,
which can alleviate the problems of over-fitting and gradient disappearing prob-
lems caused by the complex structure of the self-attention mechanism. The last
part is a feed-forward neural network for further improving the ability of model
feature extraction.

Model Training Based on Self-Supervised Learning : The traditional
training method based on supervised learning is giving the traffic flow data at
t1,t9,t3,t4 and predicting the traffic flow data at t5, which mainly focus on
regression prediction task. The prior knowledge can improve robustness and
performance if the classification task is also considered to assist the prediction
task. Our work proposes a training optimization method based on self-supervised
learning, which simultaneously considers regression and classification tasks.

To fully utilize data features in the training process, we randomly select one
prediction time node and mask or change action in the traffic data. For the
masked data, the model performs a regression prediction task. For the changed
data, the model performs a classification prediction task which aims to classify
and judge whether the data is changed. Compared with the traditional train-
ing method, our method holds several advantages. Firstly, it can observe the
complete traffic flow data in the training process, which is beneficial for the pre-
diction task. Secondly, the classification sub-task can enhance model robustness
and better judge the reliability of predicted traffic data. Thirdly, we make a re-
gression sub-task for the masked data, ensuring the final traffic flow prediction
precision.

3.2 Data Completer

Traditional data completion methods such as random fill or average fill are too
brutal to fit the real data distributions. To this end, we propose a data completer
DCGAN based on the idea of GAN to fill in the missing data. It consists of a
generator and a discriminator, where the generator tries to generate enhanced
data similar to real data distribution. The discriminator aims to judge the au-
thenticity of generated data. Specifically, the generator is constructed by the full
connected and deconvolution layers, while the convolution and full connected lay-
ers construct the discriminator. We introduce the Kullback-Leibler Divergence
(KLD) to evaluate the divergence between real data distribution and generate
data distribution. Eq.2 defines the KL divergence of distribution p(z) relative to
distribution ¢(z). Our model can be split into three parts: Convert Data Format,
Model Training, and Data Completion Process.

KL(pla) = - [ ooy |25 s 2)
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Convert Data Format :

In this part, we transform the original data into a spatial-temporal traffic
flow matrix for subsequent calculation. As shown in Fig.5, we firstly number
the spatial node in a single time point. The six spatial nodes in the figure are
numbered 1-6. Its corresponding traffic flow data are [15,10,20,10,8,12], which
are regarded as a matrix column. Moreover, each spatial node contains a period
of temporal nodes. For example, spatial node 1 has seven temporal nodes whose
traffic data are [15,13,12,10,9,7,5]. We take these temporal node traffic data as
a row of this matrix. After constructing the matrix, the value ”0” of the matrix
is considered as the missing data.

Spatial node graph of a single temporal node l‘
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i 0000000 [
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spatial-temporal traffic flow matrix

Fig. 5: The transformation of spatial-temporal traffic flow data in matrix form.

Model Training : In the training process as shown in Fig.6, the generator
produces enhanced data based on Gaussian distribution, and the discriminator
judges their authenticity. Both of them train and optimize parameters respec-
tively according to the loss function as Eq.3:

mén mDaX V(G, D) = Ewdiam [D(.'L')] + Ew"vpc [1 - D(G(Z))] (3)

where x denotes real traffic data, z denotes the noise data generated by Gaussian
distribution, G(-) is a mapping function of the generator, and D(-) is the neural
network function of the discriminator. The specific steps are as follows.
Discriminator Training aims to maximize loss under the fixed parameters
of the generator. Initially, we sample {z!, 22, ..., 2"} from the real traffic flow
data and obtain enhanced traffic low data {#!,#2,...,4™} created by generator.
Then, we take gradient ascent to optimize parameters fp to maximize the loss
function according to the Eq. 4:
1 & I G :
1 ~
mgx V= m;D(I)+m;(l D(x )),

0p =0p + uVV (91)) .
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Fig. 6: The process of DCGAN.

Generator Training aims to minimize loss under the fix parameters of
discriminator. We sample noise data {z!, 22, ..., 2™} from Gaussian distribution
and take gradient descent to optimize parameters g so as to minimize the loss
function according to the Eq. 5:

m

min V=3 (1-D (G ().

M ()
GG = QG - /LVV (eg) .

Data Completion Process :

We use the trained generator for the data completion process. Firstly, we
locate missing data and construct a real traffic data matrix by its neighbor data.
Then, we randomly sample several noise data based on Gaussian distribution
and transform them into multiple traffic spatial-temporal flow metrics by the
generator. Finally, we calculate the Euclidean distance between the generated
metric and the real matrix (except the missing items) and choose the highest
similarity matrix to fill in the missing value.

4 Experiments and Analysis

4.1 Experimental Settings

Datasets. Two datasets showing in Table 1 are used in our experiments.

— PeMS was collected from Caltrans Performance Measurement System in
real-time, which records 59 days of traffic flow data from January to February
in 2018 at important sites of California Highway in the United States. There
are 307 sensors in the system, corresponding to 307 spatial nodes. The sensors
are connected with 341 roads, corresponding to 341 spatial edges. Every five
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Table 1: The information of dataset.
. . traffic flow
DataSets [spatial node|temporal node|spatial edge Max/Avg record days
PeMS 307 16,992 341 336/186 59
XIAMEN 95 17,856 296 254/112 62

minutes is regarded as a time node, and every day corresponds to 288 time
nodes. The whole dataset corresponds to 16,992 time nodes in total.

— XTAMEN records 62 days of traffic flow data in Xiamen, China, from July
to August in 2016. There are 95 sensors corresponding to 95 spatial nodes.
The sensors are connected with 296 roads, corresponding to 296 spatial edges.
Every five minutes is regarded as a time node, and every day corresponds
to 288 time nodes. The whole dataset corresponds to 17,856 time nodes in
total.

In particular, we sort the data by time order, and the first 60% is the training
set, 20% are used for testing, and the remaining 20% for validation.

Evaluation Metric : We use Rooted Mean Square Error (RMSE) and Mean
Absolute Errors (MAE) to evaluate the proposed model, which are defined as
Eq. 6 and Eq. 7:

S (i — )

n

RSME = (6)

n A
MAE = Zi:l |y2 y2| (7>
n
where y; and y; respectively denote the real value and prediction value at the
1th time interval. n is the total number of samples in the testing data.

4.2 Performance of Traffic Flow Prediction

Methods for Comparison : We compare our method FGFTG with the fol-
lowing 8 baselines:

— Linear regression (LR): We compare our method with different versions
of linear regression methods: Ridge Regression (i.e., with L2-norm regular-
ization) and Lasso (i.e., with L1-norm regularization).

— History Average (HA): Historical average predicts the future traffic flow
data using average values of historical records.

— Vector Auto Regression (VAR) [2]: VAR can capture the pairwise re-
lationships among all flows but has massive computational costs due to a
large number of parameters.
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— Autoregressive Moving Average Model (ARIMA) [36]: ARIMA is
a combination of Auto Regression (AR) and Moving Average (MA) with a
different process.

— XGBoost [6]: XGBoost is a mighty boosting tree-based method and is
widely used in data mining applications.

— STGCN [44]: STGCN is a universal framework for processing structured
time series. It is able to tackle traffic network modeling and predicting issues
and be applied to more general spatio-temporal sequence learning tasks.

— MSTGCN [11]: Each module of MSTGCN uses the GCN model to extract
spatial features. It uses a one-dimensional convolution method to extract
temporal features to capture the spatial-temporal correlation of traffic data
effectively.

— GMAN [49]: GMAN uses an encoder-decoder structure to simulate the
influence of spatial-temporal factors on traffic conditions. The encoder en-
codes the input traffic characteristics. The decoder converts the encoded
traffic characteristics into the traffic feature vector and utilizes the traffic
feature vector to predict the output sequence.

Performance Comparison :

Table 2 shows the performances of eight baselines and our model on two
datasets with missing values. The results show that our FGFTG method per-
forms the best in terms of all measurements on both datasets. The deep learning
models achieve a better performance than the traditional model and tree model.
On the PeMS dataset where the missing value accounts for 11.3%, compared
with the worst deep learning model STGCN, even the best traditional XGBoost
model still holds higher RSME and MAE (an increase of 42.0% and 130.7%,
respectively). This result powerfully demonstrates the necessity of studying the
deep learning model. Compared with deep learning models, our model FGFTG
still achieves better performance.

To verify the effectiveness of the FGFTG structure, we firstly use the tradi-
tional training method without Self-Supervised Learning FGFTGVthoutSSL 4
compare with the best deep learning method GMAN. Results show our model
achieves a 6.9% and 3.8% lower RMSE and MAE, respectively, indicating that
our model performs better prediction performance. Later, we add Self-Supervised
Learning in the training process to further improve our performance. Compared
with GMAN, FGFTG reduces the RMSE and MAE by 11.3% and 6.7%. More-
over, similar results can be seen on the XIAMEN dataset. Consequently, the
results demonstrate that our FGFTG has good generalization performance on
flow prediction tasks.

Time Comparison : Table 3 shows the running time (measured by the second)
of different baselines on PeMS dataset. To make the comparison fairly, all the
experiments are conducted on the same machine with a 10-core 20-thread CPU
(Xeon E5-2630 v4, 2.20GHz) 128G RAM. We can easily observe that Ridge and
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Table 2: The comparison of model prediction effects.

Method PeMS XIAMEN
RMSEMAERMSEMAE

Ridge 91.52 |62.82] 66.51 |45.47
Lasso 90.49 | 64.71| 64.22 | 43.16

HA 54.14 | 36.76 | 44.03 |29.52
ARIMA 68.13 | 32.11| 43.30 | 24.04
VAR 51.73 | 33.76 | 31.21 |21.41
XGBoost 34.41 |22.75| 26.55 | 18.20
STGCN 24.23 1 9.86 | 16.40 | 7.44
MSTGCN 22.87 | 9.67 | 17.01 | 7.13
GMAN 21.83 | 8.43 | 15.84 | 7.28
FGFTGY#®PouwtSSLI 9033 [ 8.11 | 15.23 | 6.87
FGFTG 19.36 | 7.86 | 14.71 | 6.44
Improvement |11.31%(2.35%| 7.13% |9.68%

Lasso regression take the shortest running time but present the worst perfor-
mance on precision. HA, ARIMA and FGFTG differ by running time of 1-2
seconds, but the prediction precision differs by 2-4 times. Due to the complex
structural design, VAR and XGBoost hold extensive calculations and take more
running time. As deep learning methods, STGCN, MSTGCN, and GMAN per-
form worse than FGFTG, whether in prediction precision or time-consuming.
Generally speaking, our proposed FGFTG model achieves the best performance.
The same results can be seen on the XIAMEN dataset.

Table 3: The comparison of time consumption.

cost_time(seconds

Method PeMS XgAMEN)
Ridge 1.51 0.93
Lasso 1.32 0.75
HA 7.45 6.86
ARIMA 6.45 5.65
VAR 21.45 18.65
XGBoost 34.41 26.26
STGCN 34.26 9.75
MSTGCN 10.88 9.11
GMAN 13.10 10.65
FGFTGY#houtSSL[ g g9 8.62
FGFTG 8.90 8.61
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Effect of Data Completer

further explore the influence of data missing, we set different scenarios to

further show their impact on traffic flow prediction. There are three machine
learning algorithms been compared: Ridge, XGBoost, and STGCN. It is evident
in Fig.7 that the more missing data, the worse the performance of the model.

144.40 #Ridge # XGBoost » STGCN 16132 Ridge ®XGBoost =STGCN
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Fig. 7: The effects of missing data in PeMS dataset.

Next, we design two experiments to verify the performance of our proposed

data completer: DCGAN.

Reliability of Data Generation: We randomly choose 30% data and set
their value to zero, regarding them as missing data. Then, we apply different
generation methods to fill the missing data and adopt MAE to evaluate the
reliability of different methods.

Validity of Promoting Prediction Accuracy: Different data completion
methods are applied to fill the missing data and compare the performance
in the spatial-temporal traffic prediction.

Methods for Comparison : We compare our DCGAN with the following five
baselines:

Randomly fill: Replace missing data with random values taken from the
training set.

Average fill: Replace missing data with average values taken from the train-
ing set.

Moving average fill: Replace missing data with average values taken from
the neighbor of missing data.

Matrix Factorization (MF)[20]: Decompose the user-item interaction
matrix into the product of two lower dimensionality rectangular matrices
and replace the missing data with the help of the decomposed matrices.
Singular Value Decomposition (SVD)[19]: Decompose the user-item
interaction matrix into the product of three matrices: two lower dimension-
ality rectangular matrices and one non-negative real diagonal matrix.
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Fig. 8: The results of reliable verification experiment.

Reliability of Data Generation : We use the generated data by five baselines
to fill in the missing values and calculate the MAE value. As shown in Fig.8,
in the existing methods, the reliability of generated data by random filling and
average filling is larger than moving average filling. Furthermore, the MAE value
of DCGAN is 45.20% lower than moving average filling. Compared with methods
based on matrix decomposition, DCGAN also outperforms the MF and SVD
methods by 28.23% and 26.88%. Results show that our DCGAN outperforms all
baseline and is more reliable.

Validity of Promoting Prediction Accuracy : We take five different meth-
ods to fill in missing data and regard the results as inputs of three prediction
models to promote prediction accuracy. Table 4 shows the performance of the

Table 4: The result of valid promoting prediction accuracy.
Method RMSE MAE
Ridge| XGBoost|STGCN|Ridge | XGBoost|STGCN
Origin DataSet [153.56| 65.33 40.19 |129.60 55.66 28.12
Random fill 158.40| 67.23 50.18 |134.83 59.41 31.62
Average fill 144.29| 58.66 39.46 |100.98| 46.23 26.64
Moving average fill|112.15| 46.12 38.42 91.26 34.28 22.32

MF 115.31] 40.23 32.62 | 78.41 32.16 18.62
SVD 101.41| 41.48 31.26 | 76.45 30.51 14.46
DCGAN 91.52| 34.41 24.23 | 62.82| 22.75 9.86

Improvement 9.75% | 14.47% | 22.49% |17.83%| 25.43% | 31.81%

proposed method as compared to all other competing methods. Results show
that not every data filling method is helpful for traffic flow prediction. Such as
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the Random filling method, the RMSE, and MAE values increased after filling
operation, indicating the instability of this method. Average filling and Moving
average filling achieve much better accuracy. Moreover, Moving average filling
outperforms Average filling due to its delicate operation. By contrast, our DC-
GAN achieves the best performance among all the baselines. Taking XGBoost as
an example, after DCGAN filling, the RMSE and MAE decrease by 47.33% and
59.13% compared with the origin dataset. Compared with the Moving average
filling method, DCGAN reduces the RMSE and MAE by 25.39% and 33.63%,
respectively. Additionally, We find that matrix decomposition methods achieve
better improvement than data statistics-based methods but are still worse than
our DCGAN method. Taking STGCN as an example, compared with the SVD
method, the RMSE and MAE of DCGAN decreased by 22.49% and 31.81%,
respectively. Consequently, DCGAN significantly outperforms those methods in
promoting prediction accuracy.

5 Conclusion and Future Work

In this paper, we proposed FGFTG to learn fine-grained spatial-temporal rep-
resentation for traffic flow prediction. In particular, we first present the spatial-
temporal feature extractors to learn better representations, which can fuse con-
tent, neighbor, distance, and direction simultaneously and solve the problem of
temporal feature loss. Next, to improve the robustness and integrity of data,
we propose a novel data completer DCGAN to fill in missing data. Experiments
based on two public datasets demonstrate that the proposed FGFTG can lead to
better performance than state-of-the-art models. We plan to convert the origin
data into graph nodes formula rather than metric to demonstrate the depen-
dency among spatial nodes better for future work. We also plan to explore more
temporal dimension features such as weather, holidays, and other factors.
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